四川2016高考數學大綱
考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備,包括對考綱的解讀和分析。下面是學習啦小編為大家整理的四川2016高考數學大綱,請認真復習!
2016年全國高考大綱新鮮出爐——理科數學(四川用此考綱)
I.考試性質
普通高等學校招生全國統(tǒng)一考試是合格的高中畢業(yè)生和具有同等學力的考生參加的選拔性考試.高等學校根據考生成績,按已確定的招 生計劃,德、智、體全面衡量,擇優(yōu)錄取.因此,高考應具有較高的信度、 效度,必要的區(qū)分度和適當的難度.
Ⅱ.考試內容
根據普通高等學校對新生文化素質的要求,依據中華人民共和國教育部2003年頒布的《普通高中課程方案(實驗)》和《普通高中數學 課程標準(實驗)》的必修課程、選修課程系列2和系列4的內容,確定理工類高考數學科考試內容.
數學科的考試,按照“考查基礎知識的同時,注重考查能力”的原則,確立以能力立意命題的指導思想,將知識、能力和素質融為一體,全面檢測考生的數學素養(yǎng).
數學科考試,要發(fā)揮數學作為主要基礎學科的作用,要考查考生對中學的基礎知識、基本技能的掌握程度,要考查考生對數學思想方法和數學本質的理解水平,要考查考生進入高等學校繼續(xù)學習的潛能.
一、考核目標與要求
1.知識要求
知識是指《普通高中數學課程標準(實驗)》(以下簡稱《課程標準》)中所規(guī)定的必修課程、選修課程系列2和系列4中的數學概念、 性質、法則、公式、公理、定理以及由其內容反映的數學思想方法,還包括按照一定程序與步驟進行運算、處理數據、繪制圖表等基本技能.
各部分知識的整體要求及其定位參照《課程標準》相應模塊的有關說明.
對知識的要求依次是了解、理解、掌握三個層次.
(1)了解:要求對所列知識的含義有初步的、感性的認識,知道這一知識內容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在 有關的問題中識別和認識它.
這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等.
(2)理解:要求對所列知識內容有較深刻的理性認識,知道知識間的邏輯關系,能夠對所列知識做正確的描述說明并用數學語言表達,能夠利用所學的知識內容對有關問題進行比較、判別、討論,具備利用所學知識解決簡單問題的能力.
這一層次所涉及的主要行為動詞有:描述,說明,表達,推測、想象,比較、判別,初步應用等.
(3)掌握:要求能夠對所列的知識內容進行推導證明,能夠利用所學知識對問題進行分析、研究、討論,并且加以解決.
這一層次所涉及的主要行為動詞有:掌握、導出、分析,推導、證明,研究、討論、運用、解決問題等.
2.能力要求
能力是指空間想象能力、抽象概括能力、推理論證能力、運算求解能力、數據處理能力以及應用意識和創(chuàng)新意識.
(1)空間想象能力:能根據條件作出正確的圖形,根據圖形想象出直觀形象;能正確地分析出圖形中的基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質.
空間想象能力是對空間形式的觀察、分析、抽象的能力,主要表現(xiàn)為識圖、畫圖和對圖形的想象能力.識圖是指觀察研究所給圖形中幾何元素之間的相互關系;畫圖是指將文字語言和符號語言轉化為圖形語言以及對圖形添加輔助圖形或對圖形進行各種變換;對圖形 的想象主要包括有圖想圖和無圖想圖兩種,是空間想象能力高層次的標志.
(2)抽象概括能力:抽象是指舍棄事物非本質的屬性,揭示其本質的屬性;概括是指把僅僅屬于某一類對象的共同屬性區(qū)分出來的思維過程.抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎上得出某種觀點或某個結論.
抽象概括能力是對具體的、生動的實例,在抽象概括的過程中,發(fā)現(xiàn)研究對象的本質;從給定的大量信息材料中概括出一些結論,并能將其應用于解決問題或做出新的判斷.
(3)推理論證能力:推理是思維的基本形式之一,它由前提和結論兩部分組成;論證是由已有的正確的前提到被論證的結論的一連串的推理過程.推理既包括演繹推理,也包括合情推理;論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運用合情推理進行猜想,再運用演繹推理進行證明.
中學數學的推理論證能力是根據已知的事實和已獲得的正確數學命題,論證某一數學命題真實性的初步的推理能力.
(4)運算求解能力:會根據法則、公式進行正確運算、變形和數據處理,能根據問題的條件尋找與設計合理、簡捷的運算途徑,能根據要求對數據進行估計和近似計算.
運算求解能力是思維能力和運算技能的結合.運算包括對數字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等.運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調整運算的能力.
(5)數據處理能力:會收集、整理、分析數據,能從大量數據中抽取對研究問題有用的信息,并做出判斷.
數據處理能力主要依據統(tǒng)計或統(tǒng)計案例中的方法對數據進行整理、分析,并解決給定的實際問題.
(6)應用意識:能綜合應用所學數學知識、思想和方法解決問題, 包括解決相關學科、生產、生活中簡單的數學問題;能理解對問題陳述 的材料,并對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題;能應用相關的數學方法解決問題進而加以驗證,并能用數學語言正確地表達和說明.應用的主要過程是依據現(xiàn)實的生活背景, 提煉相關的數量關系,將現(xiàn)實問題轉化為數學問題,構造數學模型,并加以解決.
(7)創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應用所學的數學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題.
創(chuàng)新意識是理性思維的高層次表現(xiàn).對數學問題的“觀察、猜測、 抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數學知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強.
3.個性品質要求
個性品質是指考生個體的情感、態(tài)度和價值觀.要求考生具有一定的數學視野,認識數學的科學價值和人文價值,崇尚數學的理性精神, 形成審慎的思維習慣,體會數學的美學意義.
要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實事求是的科學態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.
4.考查要求
數學學科的系統(tǒng)性和嚴密性決定了數學知識之間深刻的內在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質上抓住這些 聯(lián)系,進而通過分類、梳理、綜合,構建數學試卷的框架結構.
(1) 對數學基礎知識的考查,既要全面又要突出重點.對于支撐學科知識體系的重點內容,要占有較大的比例,構成數學試卷的主體.注重學科的內在聯(lián)系和知識的綜合性,不刻意追求知識的覆蓋面.從學科的整體高度和思維價值的高度考慮問題,在知識網絡的交匯點處設計 試題,使對數學基礎知識的考查達到必要的深度.
(2) 對數學思想方法的考查是對數學知識在更高層次上的抽象和概括的考查,考查時必須要與數學知識相結合,通過對數學知識的考 查,反映考生對數學思想方法的掌握程度.
(3) 對數學能力的考查,強調“以能力立意”,就是以數學知識為 載體,從問題入手,把握學科的整體意義,用統(tǒng)一的數學觀點組織材料, 側重體現(xiàn)對知識的理解和應用,尤其是綜合和靈活的應用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進一步學習的潛能.
對能力的考查要全面,強調綜合性、應用性,并要切合考生實際.對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點,強調其科學性、嚴謹性、抽象性;對空間想象能力的考查主要體現(xiàn)在對文字語言、符號語言及圖形語言的互相轉化上;對運算求解能力的 考查主要是對算法和推理的考查,考查以代數運算為主;對數據處理能力的考查主要是考查運用概率統(tǒng)計的基本方法和思想解決實際問 題的能力.
(4) 對應用意識的考查主要采用解決應用問題的形式.命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設計要切合中學數學教學的實際和考生的年齡特點,并結合實踐經驗,使數學應用問題的難度符合考生的水平.
(5) 對創(chuàng)新意識的考查是對高層次理性思維的考查.在考試中創(chuàng)設新穎的問題情境,構造有一定深度和廣度的數學問題時,要注重問題的多樣化,體現(xiàn)思維的發(fā)散性;精心設計考查數學主體內容、體現(xiàn)數學 素質的試題;也要有反映數、形運動變化的試題以及研究型、探索型、開 放型等類型的試題.
數學科的命題,在考查基礎知識的基礎上,注重對數學思想方法的 考查,注重對數學能力的考查,展現(xiàn)數學的科學價值和人文價值,同時兼顧試題的基礎性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數學素 養(yǎng)的要求.
二、考試范圍與要求
本部分包括必考內容和選考內容兩部分.必考內容為《課程標準》 的必修內容和選修系列2的內容;選考內容為《課程標準》的選修系列 4的“幾何證明選講”、“坐標系與參數方程”、“不等式選講”等3個 專題.
(一)必考內容與要求
1.集合
(1) 集合的含義與表示
①了解集合的含義、元素與集合的屬于關系.
②能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
(2) 集合間的基本關系
?、倮斫饧现g包含與相等的含義,能識別給定集合的子集.
?、谠诰唧w情境中,了解全集與空集的含義.
(3) 集合的基本運算
?、倮斫鈨蓚€集合的并集與交集的含義,會求兩個簡單集合的并集 與交集.
?、诶斫庠诮o定集合中一個子集的補集的含義,會求給定子集 的補集.
?、勰苁褂庙f恩(Verm)圖表達集合的關系及運算.
2.函數概念與基本初等函數I (指數函數、對數函數、冪函數)
(1) 函數
?、倭私鈽嫵珊瘮档囊?,會求一些簡單函數的定義域和值域;了解映射的概念.
?、谠趯嶋H情境中,會根據不同的需要選擇恰當的方法(如圖像法、 列表法、解析法)表示函數.
③了解簡單的分段函數,并能簡單應用.
?、芾斫夂瘮档膯握{性、最大值、最小值及其幾何意義;結合具體函數,了解函數奇偶性的含義.
?、輹\用函數圖像理解和研究函數的性質.
(2) 指數函數
?、倭私庵笖岛瘮的P偷膶嶋H背景.
?、诶斫庥欣碇笖祪绲暮x,了解實數指數冪的意義,掌握冪的運算.
?、劾斫庵笖岛瘮档母拍?,理解指數函數的單調性,掌握指數函數 圖像通過的特殊點.
④知道指數函數是一類重要的函數模型.
(3) 對數函數
?、倮斫鈱档母拍罴捌溥\算性質,知道用換底公式能將一般對數 轉化成自然對數或常用對數;了解對數在簡化運算中的作用.
?、诶斫鈱岛瘮档母拍?,理解對數函數的單調性,掌握對數函數 圖像通過的特殊點.
③知道對數函數是一類重要的函數模型.
?、芰私庵笖岛瘮?/p>
與對數函數
互為反函數(a>0,且 a≠1 ).
(4) 冪函數
?、倭私鈨绾瘮档母拍?
②結合函數
的圖像,了解它們的變化情況.
(5) 函數與方程
?、俳Y合二次函數的圖像,了解函數的零點與方程根的聯(lián)系,判斷 一元二次方程根的存在性及根的個數.
?、诟鶕唧w函數的圖像,能夠用二分法求相應方程的近似解.
(6) 函數模型及其應用
?、倭私庵笖岛瘮?、對數函數以及冪函數的增長特征,知道直線上升、指數增長、對數增長等不同函數類型增長的含義.
?、诹私夂瘮的P?如指數函數、對數函數、冪函數、分段函數等在 社會生活中普遍使用的函數模型)的廣泛應用.
3.立體幾何初步
(1)空間幾何體
?、僬J識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些 特征描述現(xiàn)實生活中簡單物體的結構.
?、谀墚嫵龊唵慰臻g圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述三視圖所表示的立體模型,會用斜二側法畫出它們的直觀圖.
?、蹠闷叫型队芭c中心投影兩種方法畫出簡單空間圖形的三視 圖與直觀圖,了解空間圖形的不同表示形式.
?、軙嬆承┙ㄖ锏囊晥D與直觀圖(在不影響圖形特征的基礎 上,尺寸、線條等不作嚴格要求).
?、萘私馇?、棱柱、棱錐、臺的表面積和體積的計算公式.
(2)點、直線、平面之間的位置關系
?、倮斫饪臻g直線、平面位置關系的定義,并了解如下可以作為推 理依據的公理和定理.
•公理1 :如果一條直線上的兩點在一個平面內,那么這條直線上 所有的點都在此平面內.
•公理2:過不在同一條直線上的三點,有且只有一個平面.
•公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
•公理4:平行于同一條直線的兩條直線互相平行.
•定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補.
?、谝粤Ⅲw幾何的上述定義、公理和定理為出發(fā)點,認識和理解空 間中線面平行、垂直的有關性質與判定定理.
理解以下判定定理.
•如果平面外一條直線與此平面內的一條直線平行,那么該直線與此平面平行.
•如果一個平面內的兩條相交直線與另一個平面都平行,那么這兩個平面平行.
•如果一條直線與一個平面內的兩條相交直線都垂直,那么該直線與此平面垂直.
•如果一個平面經過另一個平面的垂線,那么這兩個平面互相垂直.
理解以下性質定理,并能夠證明.
•如果一條直線與一個平面平行,那么經過該直線的任一個平面與此平面的交線和該直線平行.
•如果兩個平行平面同時和第三個平面相交,那么它們的交線相互平行.
•垂直于同一個平面的兩條直線平行.
•如果兩個平面垂直,那么一個平面內垂直于它們交線的直線與另一個平面垂直.
③能運用公理、定理和已獲得的結論證明一些空間圖形的位置關系的簡單命題.
4.平面解析幾何初步
(1) 直線與方程
?、僭谄矫嬷苯亲鴺讼抵校Y合具體圖形,確定直線位置的幾 何要素.
?、诶斫庵本€的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式.
?、勰芨鶕蓷l直線的斜率判定這兩條直線平行或垂直.
④掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點 斜式、兩點式及一般式),了解斜截式與一次函數的關系.
?、菽苡媒夥匠探M的方法求兩條相交直線的交點坐標.
?、拚莆諆牲c間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離.
(2) 圓與方程
?、僬莆沾_定圓的幾何要素,掌握圓的標準方程與一般方程.
?、谀芨鶕o定直線、圓的方程判斷直線與圓的位置關系;能根據給定兩個圓的方程判斷兩圓的位置關系.
?、勰苡弥本€和圓的方程解決一些簡單的問題.
④初步了解用代數方法處理幾何問題的思想.
(3) 空間直角坐標系
?、倭私饪臻g直角坐標系,會用空間直角坐標表示點的位置.
?、跁茖Э臻g兩點間的距離公式.
5.算法初步
(1)算法的含義、程序框圖
?、倭私馑惴ǖ暮x,了解算法的思想.
?、诶斫獬绦蚩驁D的三種基本邏輯結構:順序、條件分支、循環(huán).
(2)基本算法語句
理解幾種基本算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句的含義.
6.統(tǒng)計
(1) 隨機抽樣
①理解隨機抽樣的必要性和重要性.
?、跁煤唵坞S機抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法.
(2) 用樣本估計總體
①了解分布的意義和作用,會列頻率分布表,會畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點.
②理解樣本數據標準差的意義和作用,會計算數據標準差.
?、勰軓臉颖緮祿刑崛』镜臄底痔卣?如平均數、標準差),并給出合理的解釋.
?、軙脴颖镜念l率分布估計總體分布,會用樣本的基本數字特征估計總體的基本數字特征,理解用樣本估計總體的思想.
?、輹秒S機抽樣的基本方法和樣本估計總體的思想解決一些簡單的實際問題.
(3) 變量的相關性
?、贂鲀蓚€有關聯(lián)變量的數據的散點圖,會利用散點圖認識變量間的相關關系.
?、诹私庾钚《朔ǖ乃枷耄芨鶕o出的線性回歸方程系數公式建立線性回歸方程.
7.概率
(1)事件與概率
?、倭私怆S機事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別.
?、诹私鈨蓚€互斥事件的概率加法公式.
(2) 古典概型
?、倮斫夤诺涓判图捌涓怕视嬎愎?
?、跁嬎阋恍╇S機事件所含的基本事件數及事件發(fā)生的概率.
(3) 隨機數與幾何概型
?、倭私怆S機數的意義,能運用模擬方法估計概率.
?、诹私鈳缀胃判偷囊饬x.
8.基本初等函數n (三角函數)
(1) 任意角的概念、弧度制
?、倭私馊我饨堑母拍?
②了解弧度制的概念,能進行弧度與角度的互化.
(2) 三角函數
①理解任意角三角函數(正弦、余弦、正切)的定義.
?、谀芾脝挝粓A中的三角函數線推導出±α,π±α的正弦、余弦、正切的誘導公式,能畫出y = sin x,y = cos x,y = tan x的圖像,了解三角函數的周期性.
?、劾斫庹液瘮?、余弦函數在區(qū)間[0,2π]上的性質(如單調性、最大值和最小值以及與x軸的交點等),理解正切函數在區(qū)間
內的單調性.
?、芾斫馔侨呛瘮档幕娟P系式:sin2 x +cos2 x= 1,
⑤了解函數
的物理意義;能畫出
的圖像,了解參數
對函數圖像變化的影響.
?、蘖私馊呛瘮凳敲枋鲋芷谧兓F(xiàn)象的重要函數模型,會用三角函數解決一些簡單實際問題.