高一數學解題方法技巧
學習數學需要講究方法和技巧,用對方法做什么事情都會事半功倍,高一數學該怎么解題呢?下面是學習啦小編為大家整理的高一數學解題方法,希望對大家有所幫助!
高一數學解題思路一:函數與方程
函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系(或構造函數)運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數與方程間的相互轉化。
高一數學解題思路二:數形結合
中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數學題時,能畫圖的盡量畫出圖形,以利于正確的理解題意、快速地解決問題。
高一數學解題思路三:特殊與一般
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高一數學解題思路四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設法構思一個與它有關的變量;(2)確認這變量通過無限過程的結果就是所求的未知量;(3)構造函數(數列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。
高一數學解題思路五:分類討論
我們常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數學概念本身具有多種情形,數學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標準統(tǒng)一,不重不漏。
知識拓展:高一數學解題口訣
一、《集合與函數》
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規(guī)律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
二、《立體幾何》
點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
三、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
看過" 高一數學解題思路 高一數學解題方法 "的還看了:
1.高一數學解題方法