初二數學知識點北師版
天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些初二數學的知識點,希望對大家有所幫助。
抽樣調查
(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。
(2)是以抽取的全部樣本單位作為一個“代表團”,用整個“代表團”來代表總體。而不是用隨意挑選的個別單位代表總體。
(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。
(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,并控制在允許范圍以內,調查結果的準確程度較高。
課后練習
1.抽樣成數是一個(A)
A.結構相對數B.比例相對數C.比較相對數D.強度相對數
2.成數和成數方差的關系是(C)
A.成數越接近于0,成數方差越大B.成數越接近于1,成數方差越大
C.成數越接近于0.5,成數方差越大D.成數越接近于0.25,成數方差越大
3.整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)
A.全面調查B.非全面調查C.一次性調查D.經常性調查
4.對400名大學生抽取19%進行不重復抽樣調查,其中優(yōu)等生比重為20%,概率保證程度為95.45%,則優(yōu)等生比重的極限抽樣誤差為(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)
A.甲產品大B.乙產品大C.相等D.無法判斷
八年級下冊數學復習知識點
零指數冪與負整指數冪
重點:冪的性質(指數為全體整數)并會用于計算以及用科學記數法表示一些絕對值較小的數
難點:理解和應用整數指數冪的性質。
一、復習練習:
1、;=;=,=,=。
2、不用計算器計算:÷(—2)2—2-1+
二、指數的范圍擴大到了全體整數.
1、探索
現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那么,在“冪的運算”中所學的冪的性質是否還成立呢?與同學們討論并交流一下,判斷下列式子是否成立.
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指數的范圍已經擴大到了全體整數后,冪的運算法則仍然成立。
3、例1計算(2mn2)-3(mn-2)-5并且把結果化為只含有正整數指數冪的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4練習:計算下列各式,并且把結果化為只含有正整數指數冪的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科學記數法
1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大于10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105.
2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
歸納:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一個納米粒子的直徑是35納米,它等于多少米?請用科學記數法表示.
分析我們知道:1納米=米.由=10-9可知,1納米=10-9米.
所以35納米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以這個納米粒子的直徑為3.5×10-8米.
5、練習
①用科學記數法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.
②用科學記數法填空:
(1)1秒是1微秒的1000000倍,則1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1納米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
初二數學知識點北師版相關文章:
初二數學知識點北師版





上一篇:2021初二數學知識點梳理
下一篇:湘教版八年級數學的知識點